Solving Fractional Fredholm Integro-Differential Equations by Laguerre Polynomials
نویسندگان
چکیده
منابع مشابه
Solving the fractional integro-differential equations using fractional order Jacobi polynomials
In this paper, we are intend to present a numerical algorithm for computing approximate solution of linear and nonlinear Fredholm, Volterra and Fredholm-Volterra integro-differential equations. The approximated solution is written in terms of fractional Jacobi polynomials. In this way, firstly we define Riemann-Liouville fractional operational matrix of fractional order Jacobi polynomials, the...
متن کاملApplication of Laguerre Polynomials for Solving Infinite Boundary Integro-Differential Equations
In this study, an efficient method is presented for solving infinite boundary integro-differential equations (IBI-DE) of the second kind with degenerate kernel in terms of Laguerre polynomials. Properties of these polynomials and operational matrix of integration are first presented. These properties are then used to transform the integral equation to a matrix equation which corresponds t...
متن کاملSolving Non-linear Fredholm Integro-differential Equations
In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...
متن کاملSolving two-dimensional fractional integro-differential equations by Legendre wavelets
In this paper, we introduce the two-dimensional Legendre wavelets (2D-LWs), and develop them for solving a class of two-dimensional integro-differential equations (2D-IDEs) of fractional order. We also investigate convergence of the method. Finally, we give some illustrative examples to demonstrate the validity and efficiency of the method.
متن کاملAPPLICATION OF HAAR WAVELETS IN SOLVING NONLINEAR FRACTIONAL FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
A novel and eective method based on Haar wavelets and Block Pulse Functions(BPFs) is proposed to solve nonlinear Fredholm integro-dierential equations of fractional order.The operational matrix of Haar wavelets via BPFs is derived and together with Haar waveletoperational matrix of fractional integration are used to transform the mentioned equation to asystem of algebraic equations. Our new met...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sains Malaysiana
سال: 2019
ISSN: 0126-6039
DOI: 10.17576/jsm-2019-4801-29